This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#include <bits/stdc++.h>
#include "Tree/hld.hpp"
#include "DataStructure/segtree.hpp"
#include "Math/modint.hpp"
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;
using namespace std;
using S = pair<mint, mint>;
S op1(S lhs, S rhs){
return {rhs.first * lhs.first, rhs.first * lhs.second + rhs.second};
}
S op2(S lhs, S rhs){
return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second};
}
S e(){
return make_pair(1, 0);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int N, Q, cmd, u, v, x;
cin >> N >> Q;
vector<pair<mint,mint>> a(N), b(N);
vector<vector<int>> g(N);
for(int i = 0; i < N; i++){
cin >> a[i].first.v >> a[i].second.v;
}
for(int i = 1; i < N; i++){
cin >> u >> v;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
Heavy_Light_Decomposition HLD(g);
for(int i = 0; i < N; i++){
b[HLD[i]] = a[i];
}
segtree<S, op1, e> seg1(b);
segtree<S, op2, e> seg2(b);
auto qf = [&](int l, int r){
return seg1.prod(l, r);
};
auto rev_qf = [&](int l, int r){
return seg2.prod(l, r);
};
auto f = [&](S lhs, S rhs){
return make_pair(rhs.first * lhs.first, rhs.first * lhs.second + rhs.second);
};
while(Q--){
cin >> cmd >> u >> v >> x;
if(cmd == 0){
seg1.set(HLD[u], make_pair(v, x));
seg2.set(HLD[u], make_pair(v, x));
}else{
auto pa = HLD.noncom_query(u, v, e(), qf, rev_qf, f);
cout << pa.first * x + pa.second << '\n';
}
}
}
#line 1 "Test/Library Checker/Tree/vertex_set_path_composite01.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#include <bits/stdc++.h>
#line 1 "Tree/hld.hpp"
struct Heavy_Light_Decomposition{
int N, tim = 0;
std::vector<int> sz, ent, leader, order, par;
std::vector<std::vector<int>> &G;
Heavy_Light_Decomposition(std::vector<std::vector<int>> &g) :
N(g.size()), G(g), sz(N), ent(N), leader(N), order(N), par(N) {
dfs_size(0, -1);
dfs_hld(0);
}
const int operator[](int v) const {
assert(0 <= v && v < N);
return ent[v];
}
int operator[](int v) {
assert(0 <= v && v < N);
return ent[v];
}
int la(int v, int k) {
while(true) {
int u = leader[v];
if(ent[v] - k >= ent[u]) return order[ent[v] - k];
k -= ent[v] - ent[u] + 1;
v = par[u];
}
}
int la(int from, int to, int d){
int d1 = 0, d2 = 0;
int v = from, u = to;
do{
if(ent[u] < ent[v]){
if(leader[u] == leader[v]){
d1 += ent[v] - ent[u];
break;
}
d1 += ent[v] - ent[leader[v]] + 1;
v = par[leader[v]];
}else{
if(leader[u] == leader[v]){
d2 += ent[u] - ent[v];
break;
}
d2 += ent[u] - ent[leader[u]] + 1;
u = par[leader[u]];
}
}while(true);
if(d > d1 + d2) return -1;
return d <= d1 ? la(from, d) : la(to, d1 + d2 - d);
}
int lca(int u, int v) {
do{
if(ent[u] > ent[v]) std::swap(u, v);
if(leader[u] == leader[v]) return u;
v = par[leader[v]];
}while(true);
}
int dist(int u, int v){
int ans = 0;
do{
if(ent[u] > ent[v]) std::swap(u, v);
if(leader[u] == leader[v]) return ans + ent[v] - ent[u];
ans += ent[v] - ent[leader[v]] + 1;
v = par[leader[v]];
}while(true);
}
template< typename T, typename Q, typename F >
T query(int u, int v, const T &identity, const Q &qf, const F &f, bool edge = false) {
T ans = identity;
do{
if(ent[u] > ent[v]) std::swap(u, v);
if(leader[u] == leader[v]) break;
ans = f( qf(ent[leader[v]], ent[v] + 1), ans);
v = par[leader[v]];
}while(true);
return f( qf(ent[u] + edge, ent[v] + 1), ans);
}
template< typename T, typename Q1, typename Q2, typename F >
T noncom_query(int u, int v, const T &identity,
const Q1 &qf, const Q2 &rev_qf, const F &f, bool edge = false) {
T sml = identity, smr = identity;
do{
if(leader[u] == leader[v]) break;
if(ent[u] < ent[v]){
smr = f( qf(ent[leader[v]], ent[v] + 1), smr);
v = par[leader[v]];
}else{
sml = f( sml, rev_qf(ent[leader[u]], ent[u] + 1));
u = par[leader[u]];
}
}while(true);
if(ent[u] < ent[v]){
return f(sml, f( qf(ent[u] + edge, ent[v] + 1), smr));
}else{
return f(f(sml, rev_qf(ent[v] + edge, ent[u] + 1)), smr);
}
}
template< typename Q >
void update(int u, int v, const Q &q, bool edge = false) {
do{
if(ent[u] > ent[v]) std::swap(u, v);
if(leader[u] == leader[v]) break;
q(ent[leader[v]], ent[v] + 1);
v = par[leader[v]];
}while(true);
q(ent[u] + edge, ent[v] + 1);
}
private:
void dfs_size(int v, int p){
par[v] = p;
sz[v] = 1;
if(!G[v].empty() && G[v][0] == p) std::swap(G[v][0], G[v].back());
for(auto &u : G[v]){
if(u == p) continue;
dfs_size(u, v);
sz[v] += sz[u];
if(sz[u] > sz[G[v][0]]) std::swap(G[v][0], u);
}
}
void dfs_hld(int v){
ent[v] = tim++;
order[ent[v]] = v;
for(auto &u : G[v]) {
if(u == par[v]) continue;
leader[u] = (G[v][0] == u ? leader[v] : u);
dfs_hld(u);
}
}
};
#line 1 "DataStructure/segtree.hpp"
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
const S operator[](int p) const { return get(p); }
S operator[](int p) { return get(p); }
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
#line 1 "Math/modint.hpp"
template<const unsigned int MOD> struct prime_modint {
using mint = prime_modint;
unsigned int v;
prime_modint() : v(0) {}
prime_modint(unsigned int a) { a %= MOD; v = a; }
prime_modint(unsigned long long a) { a %= MOD; v = a; }
prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
static constexpr int mod() { return MOD; }
mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
mint operator++(int) { mint result = *this; ++*this; return result; }
mint operator--(int) { mint result = *this; --*this; return result; }
mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
mint& operator*=(const mint& rhs) {
v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint r = 1, x = *this;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const { assert(v); return pow(MOD - 2); }
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
#line 7 "Test/Library Checker/Tree/vertex_set_path_composite01.test.cpp"
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;
using namespace std;
using S = pair<mint, mint>;
S op1(S lhs, S rhs){
return {rhs.first * lhs.first, rhs.first * lhs.second + rhs.second};
}
S op2(S lhs, S rhs){
return {lhs.first * rhs.first, lhs.first * rhs.second + lhs.second};
}
S e(){
return make_pair(1, 0);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int N, Q, cmd, u, v, x;
cin >> N >> Q;
vector<pair<mint,mint>> a(N), b(N);
vector<vector<int>> g(N);
for(int i = 0; i < N; i++){
cin >> a[i].first.v >> a[i].second.v;
}
for(int i = 1; i < N; i++){
cin >> u >> v;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
Heavy_Light_Decomposition HLD(g);
for(int i = 0; i < N; i++){
b[HLD[i]] = a[i];
}
segtree<S, op1, e> seg1(b);
segtree<S, op2, e> seg2(b);
auto qf = [&](int l, int r){
return seg1.prod(l, r);
};
auto rev_qf = [&](int l, int r){
return seg2.prod(l, r);
};
auto f = [&](S lhs, S rhs){
return make_pair(rhs.first * lhs.first, rhs.first * lhs.second + rhs.second);
};
while(Q--){
cin >> cmd >> u >> v >> x;
if(cmd == 0){
seg1.set(HLD[u], make_pair(v, x));
seg2.set(HLD[u], make_pair(v, x));
}else{
auto pa = HLD.noncom_query(u, v, e(), qf, rev_qf, f);
cout << pa.first * x + pa.second << '\n';
}
}
}