This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/1/DSL_2_A"
#include <bits/stdc++.h>
#include "DataStructure/segtree.hpp"
int op(int lhs, int rhs) {
return std::min(lhs, rhs);
}
int e(){
return std::numeric_limits<int>::max();
}
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int n, q;
std::cin >> n >> q;
segtree<int, op, e> seg(n);
while(q--){
int cmd, x, y;
std::cin >> cmd >> x >> y;
if(cmd == 0) {
seg.set(x, y);
} else {
std::cout << seg.prod(x, ++y) << '\n';
}
}
}
#line 1 "Test/Aizu Online Judge/DSL/DSL_2_A.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/1/DSL_2_A"
#include <bits/stdc++.h>
#line 1 "DataStructure/segtree.hpp"
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
const S operator[](int p) const { return get(p); }
S operator[](int p) { return get(p); }
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
#line 5 "Test/Aizu Online Judge/DSL/DSL_2_A.test.cpp"
int op(int lhs, int rhs) {
return std::min(lhs, rhs);
}
int e(){
return std::numeric_limits<int>::max();
}
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int n, q;
std::cin >> n >> q;
segtree<int, op, e> seg(n);
while(q--){
int cmd, x, y;
std::cin >> cmd >> x >> y;
if(cmd == 0) {
seg.set(x, y);
} else {
std::cout << seg.prod(x, ++y) << '\n';
}
}
}